
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE 1

Army Vehicle Software Complexity Prediction
Metric – Five Factors

Macam S Dattathreya and Harpreet Singh, Senior Member, IEEE

Abstract— Army vehicle software provides mission critical complex functions. It interacts with complex electronics from multiple

vendors and has unique software interfaces. The software structure complexity is influenced by many factors prior to software

development. Understanding, predicting and resolving complexity of vehicle software prior to its development is a necessity for

army mission success. Current complexity metrics are historical data distribution dependent. It focuses on software and its

technical structure with no consideration of its influencing factors. Non-technical metrics related to software complexity are

required to address diverse skill set including the management. Using non-technical metrics prior to software development

enables management to spend resources early to resolve issues faster. In this paper, the authors propose five non-technical

factor metrics based on the current software development process to predict future Army vehicle software complexity. Factor

analysis and fuzzy logic techniques are used for developing, modeling and analyzing the software complexity prediction metric.

The proposed metric is independent of software, programming language, and domain. This metric is data distribution

independent.

Index Terms—Maintainability, Metrics/Measurements, Process metrics, Reliability

—————————— ——————————

1 INTRODUCTION

1.1 Army Vehicles and its Software

RMY is one of the military divisions specialized in
land warfare. In a given war mission, the war zone
is very hostile, the terrain is unknown and the Army

has to perform several critical complex functions to defeat
enemy forces. To carry out a mission, the Army uses
many different types of vehicles including armored fight-
ing, medical, reconnaissance, fire support, and mortar
carrying vehicles. These vehicles have multiple electronic
devices, networks, and computing resources. The vehicles
are built with tight security rules, multiple unique devices
integration, multiple unique legacy software integration,
strict performance requirements, involvement with hu-
man lives, and precision requirements.
The vehicle on-board devices are from multiple vendors
and have unique software interfaces. These devices inte-
ract with each others using a complex network. Besides
interacting within a given vehicle, these devices have to
communicate with other devices on other vehicles and
commanding centers. The Army battle success depends
on effective interoperable communications between these
devices and its software.

The Army vehicles’ devices are real-time and are con-
trolled by embedded operating systems. The Army ve-
hicle software on these devices is developed using Ada,
Java, C, C++, and etc programming languages. The Army
vehicles have software related to radios, communications,
navigation, fighting, training, diagnostics, and etc. For the
Army, the vehicle software is crucial and any complexity

in it hinders the mission success. The Army software is
developed under intense tight requirements using mul-
tiple vendors. The software has millions of lines of code.
They are developed using many different programming
languages and require efficient integration to minimize
possible software complexity. The Army has to focus
more on its vehicle software complexity than any other
commercial software, because, the Army environment is
dynamic and its requirements are changing frequently to
meet mission needs. The complex software in an Army
vehicle introduces many defects and makes it difficult to
understand the software and correct the defects in a rela-
tively faster pace. The Army cannot afford to have defects
in any critical functions. If the software cannot accommo-
date frequent changes in a faster way, the vehicles cannot
perform its intended function and it is not acceptable to
the Army.

The software complexity is a major concern for any
Army vehicle software to maintain its peak performance
at all time. There is a bigger need for identifying metrics
to predict the Army vehicle software complexity in very
early stages of its development cycle. Many researchers
have postmortem historical software and identified the
reasons why a given software structure is complex, but, to
our knowledge, no body has made an attempt to identify
the Army vehicle software complexity contributing fac-
tors by inspecting the current software development
process. Many researchers have defined several software
complexity metrics but they all are historical technical
data dependent and may not work in all software devel-
opment.

The complexity is influenced by many factors prior to
software development. Understanding, predicting and

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Macam S Dattathreya is with the Tank Automotive Research, Development
and Engineering Center, Warren, MI 48397.

 H. Singh is with the Department of Electrical and Computer Engineering,

Wayne State University, Detroit, MI 48202 USA.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

A

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
14 APR 2010

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Army Vehicle Software Complexity Prediction Metric Five
Factors(PREPRINT)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Macam S Dattathreya; Harpreet Singh

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000, USA Wayne State University, Detroit, MI

8. PERFORMING ORGANIZATION REPORT NUMBER
20723

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000, USA

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC/RDECOM

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
20723

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Submitted for publication in IEEE Transication on Software Eengineering, The original document
contains color images.

14. ABSTRACT
Army vehicle software provides mission critical complex functions. It interacts with complex electronics
from multiple vendors and has unique software interfaces. The software structure complexity is influenced
by many factors prior to software development. Understanding, predicting and resolving complexity of
vehicle software prior to its development is a necessity for army mission success. Current complexity
metrics are historical data distribution dependent. It focuses on software and its technical structure with
no consideration of its influencing factors. Non-technical metrics related to software complexity are
required to address diverse skill set including the management. Using non-technical metrics prior to
software development enables management to spend resources early to resolve issues faster. In this paper,
the authors propose five non-technical factor metrics based on the current software development process to
predict future Army vehicle software complexity. Factor analysis and fuzzy logic techniques are used for
developing, modeling and analyzing the software complexity prediction metric. The proposed metric is
independent of software, programming language, and domain. This metric is data distribution
independent.

15. SUBJECT TERMS
Maintainability, Metrics/Measurements, Process metrics, Reliability

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18.
NUMBER
OF PAGES

10

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

resolving complexity of vehicle software prior to its de-
velopment is a necessity for Army mission success. In this
paper we describe the proposed software complexity pre-
diction metric for Army vehicle software.

1.2 Software Complexity

Honglei et al [1] summarizes the software complexity
definition as difficulty of understanding the program,
difficulty of correcting the defects and maintaining the
software, difficulty of explaining the software to other
people, difficulty of updating the program according to
some assigned rules, work load of writing programs ac-
cording to the design, and availability of necessary re-
sources when programs are executing. Kearney et al [2]
defines software complexity as applying to the interaction
between a program and a programmer working on some
programming task.

We define true software complexity as a combination of
three main elements i.e. reliability, availability, and main-
tainability (RAM). There are many features that may be
qualified as software complexity elements, but, from our
experience the main complexity is truly a result of RAM.
The definitions of RAM described in next few lines con-
firm that the software complexity is a combination of
RAM. Reliability (R) is the probability of performing a
required function under stated conditions for a specified
period of time [3]. Availability (A) is a measure of the de-
gree to which software is in an operable state and can be
committed at the start of a mission when called for at an
unknown (random) point in time. Availability as meas-
ured by the user is a function of how often failures occur
and corrective maintenance is required, how often pre-
ventative maintenance is performed, how quickly indi-
cated failures can be isolated and repaired, and how
quickly preventive maintenance tasks can be performed
[3]. Maintainability (M) is the ability of software to be
retained in, or restored to, a specified condition when
maintenance is performed by personnel having specified
skill levels, using prescribed procedures and resources, at
each prescribed level of maintenance and repair [3]. The
software complexity influences a lot of software defects
and introduces unknowns when it comes to fixing them.
If the software is complex, its reliability is hard to achieve,
due to this, the software may suffer availability issues. If
the software is hard to understand, hard to fix defects,
then the maintainability suffers. The bottom-line is, the
RAM controls the entire software dependability, and
without it the Army cannot perform its intended func-
tions. These arguments confirm that the software com-
plexity is really consisting of RAM elements.

Many existing software complexity metrics are histori-
cal data distribution dependent and they focus only on
software & its technical structure with no consideration of
its influencing factors. These metrics provide unique
software attributes to define complexity and they are
programming language or industry specific. These com-
plexity metrics require skilled resources to understand,
implement, and resolve complexity. Identifying complexi-
ty based on one source of software historical data and
applying it to another may not work for all software.

There are multiple factors which contribute to its complex
structure. Management may not understand the technical
complexity data obtained from the historical data. In
many cases, the developers may not be skilled enough to
understand this to implement a good solution. Convinc-
ing management to spend resources on resolving prob-
lems in the development phase just based on the technical
complexity data is very hard. Many skilled developers
and designers must be assigned to fix issues. This could
be expensive and the problems may not be solved due to
tight schedules and wrong historical data. Basing the de-
cisions on these metrics and attempting to reduce com-
plexity may work in some but not in all cases because the
factors which contributed to complexity are still not ex-
amined. Historical data change when the contributing
factors and the target software are changed. These metrics
are complex mathematical formulations and need tools to
find the elements proposed by these researchers to collect
data from the historical complex software. These metrics
may not be easily understood by all applicable parties.
There is a need for non-technical metrics which are com-
mon to any software development and for any industry.

The McCabe’s *4+ software complexity metrics are
based on a software program’s control flow. It introduces
the concept of Cyclomatic Complexity, where the number
of flow graph edges, nodes and predicate nodes are com-
bined to represent the complexity. The Cyclomatic Com-
plexity of a source code is the linearly independent paths
count through the source code. It is mathematically de-
fined as C = E - N +2P, where E = number of edges of the
graph, N = number of nodes in the graph, and P = number
of predicate nodes.

The Halstead [5] software complexity metric provides
the measure of software algorithm complexity. It meas-
ures the complexity by counting number of operators and
operands in software. It measures the software's ability to
understand and estimates the effort required to develop a
software algorithm. It also indicates the amount of time to
implement an algorithm. Halstead metrics are difficult to
calculate and it is very hard to count the distinct and total
operators and operands in a software program.

The Henry and Kafura [6] software complexity metric
provides the measure of couplings between modules in
terms of number of parameters, global variables and func-
tion calls. It measures given software’s procedure, module
and interfaces. Henry and Kafura believe that measure-
ment of software quality for large scale systems using
information flow to represent the system interconnectivi-
ty is an important visible technique.

The Entropy based software complexity measure [7] is
based on the average information content of each opera-
tor in a software program's source code.

The Cognitive weights software complexity metrics [8]
from Jingqiu Shao and Yingxu Wang models the software
complexity based on the cognitive functional size of the
software. The cognitive functionalize provides a founda-
tion for cross-platform analysis of complexities, sizes and
comprehension effort of software specifications in various
design phases.

The Relative complexity metrics [9] represents a single,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

 3

unified measure on the structure of a software program. It
serves to classify a set of software programs in order of
their increasing complexity in relation to each other.

The [4], [5], [6], [7], [8], and [9] metrics discussed earlier
are too technical and focus only on technical structure of a
software program. These data are hard to compute and
requires many skilled resources to understand and im-
plement solutions.

Above arguments lead to a conclusion that we need
metrics captured from the current software development
process documents rather than the software itself. These
metrics must be easily understood by both the technical
and non- technical resources. These metrics can be used
to measure the current software development process
elements and predict the future software complexity. If
the software complexity is predicted early enough in the
software planning lifecycle, the complexity can be ma-
naged through many preventive measures such as revisit-
ing the requirements, restructuring the development
team, scheduling for reviews, modifying the testing strat-
egy, etc. With early prediction, less effort can be put into
the software development and restructuring the executing
plan. If the complexity is predicted using the factors
which are available from the beginning of a software de-
velopment program, it makes it easy for the management
to visualize and act fast.

We describe the proposed software complexity predic-

tion metric in the following sections.

1) The prediction metric development - using factor anal-
ysis
2) The prediction algorithm - using fuzzy logic
3) The prediction model development - using fuzzy logic

2 THE PREDICTION METRIC DEVELOPMENT

2.1 Metric Development

The following ten non-technical variables are extracted

from the Army vehicle software development project

plan, development strategy, test strategy, technology

strategy, and requirements analysis documents.

1) Technical readiness level (TRL)
2) Number of planned skilled resources (PSR)
3) Number of planned code reviews (PCR)
4) Number of planned design reviews (PDR)
5) Number of planned architecture reviews (PAR)
6) Number of planned integration reviews (PIR)
7) Number of planned design documents (PDC)
8) Number of planned test case documents (PTD)
9) Number of planned configuration management tasks
(CM)
10) Number of open requirements (OR)
In an Army vehicle software development process, cha-
racteristics of these variables influence schedules, number
of defects, cost, number of modules, use of best practices,
etc. Issues from these variables compounds and results in
a complex software structure which is responsible for a
less reliable and available, and hard to maintain software.
The above list of multiple dimensions with many mutual-
ly correlated variables is reduced to a smaller set of un-

correlated variables with conceptual indices to measure
similar factors. Dr. Deok H Nam et al [10] data reduction
technique reduces the data in both the rows and columns.
This technique reduces dataset based on the historical
data distribution and is applicable when the measure-
ment variables have no impact on the reduced data set.
For the proposed metrics development, too much data
reduction produces bad results.

The factor analysis technique is applied to reduce a
multitude of measurable variables to smaller manageable
factors. The factor analysis extracts factors from a sample
of data collection (observations) where variables are dis-
tributed in a consistent manner, e.g. code review is related
to the number of defects in a software test, because, code
with higher reviews produces fewer defects.

A factor analysis function was applied to 24 Army ve-

hicle software development projects data (see Fig. 10) to
produce a covariance output using the principle compo-
nent analysis, Varimax rotation and the Kaiser criterion.
The covariance was observed to capture common concep-
tual indexes from the factor analysis output. Five factors
from the ten mutually correlated variables were extracted.
The Kaiser criterion retains only factors with eigenvalues
greater than 1.0. The eigenvalues are the variance of the
extracted factors. The Eigen-value for a given factor
measures the variance in all the variables which is ac-
counted for by that factor. TABLE 1 lists the factor analy-
sis output from the analysis tool. Ten variables with a
variance of one for each transform to a total extracted va-
riability of 10 (10*1). From TABLE 2, it is clear that all fac-
tor’s Eigen-values are over one and five extracted factors
show 85% of the variances from ten variables. This reduc-
tion emphasizes that fewer variables in the selected pool

TABLE 1
ROTATED FACTOR LOADINGS

Variables F1 F2 F3 F4 F5

TRL -0.062 -0.034 -0.940 -0.002 0.048

PSR 0.604 0.405 -0.463 0.281 0.132

PCR 0.393 0.103 0.492 -0.716 0.007

PDR 0.026 0.896 0.268 0.154 0.124

PAR 0.275 0.390 0.180 0.812 0.133

PIR 0.707 0.455 -0.130 -0.203 -0.127

PDC - 0.108 0.022 -0.053 0.072 0.978

PTD 0.232 0.731 -0.286 0.082 -0.096

CM 0.875 -0.077 0.123 0.030 -0.157

OR 0.674 0.510 0.315 0.121 0.108

 TABLE 2
EIGENVALUES (VARIANCE)

Factors Eigenvalue

F1 2.383

F2 2.138

F3 1.661

F4 1.343

F5 1.071

Communality 8.595

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

could be conceptually connected to achieve the intended
function.

Statistics is a mathematical formulation based on a past
data distribution snapshot and may not be a future pre-
dictor. The environment is dynamically changing with
time and might pose a different situation. In the our’s and
other researcher’s experience, historical data factor analy-
sis cannot solve the reduction problem in all cases. This
has to be integrated with human skills in interpreting and
identifying the correct common indexes.

Per TABLE 1 (gray highlighted text), PCR, PDR, PAR,
PDC, and CM show higher covariance among other va-
riables. If one were to choose purely on this analysis, it
would be badly judged, as PCR, PDR, and PAR can be
linked to a single factor. In addition to analysis data and
our experience dealing with software, the proposed soft-
ware complexity prediction factors are listed in TABLE 3.
F1 can consist of PCR, PDR, PAR, PIR and PSR. F2 can
consist of PDC & PTD. F3 can consist of TRL which plays
a big role in any software development. F4 can consist of
OR alone because ORs create a greater impact on any
software development. F5 can consist of CM alone be-
cause CM is very important in making sure the developed
software is properly controlled and configured.

Based on the earlier discussions, we propose the follow-
ing five factors metric to predict software complexity.
1) Technical readiness level (TRL)
2) Number of open requirements (OR)
3) Number of planned technical reviews (TR)
4) Number of planned documentation tasks (DOC)
5) Number of planned configuration management tasks
(CM)

As previously stated, the true software complexity is a
combination of R, A, and M. The DOD’s RAM guide [3]
defines RAM essentialness to military systems and soft-
ware and describes various affecting factors. Subsequent
paragraphs describe the proposed metric elements and its
association with R, A, and M.

For predicting the Army vehicle software complexity, all
the five factors must be considered because the combina-
tion of factors predicts R, A, and M component of the
software complexity as shown below.
1) TRL, TR, and OR factors predict reliability.
2) TRL and TR factors predict availability.
3) DOC and CM factors to predict maintainability.

2.2 Metric Elements

Technology readiness level (TRL)

 The TRL measures evolving technologies maturity
prior to its implementation. The readiness is indicated by
1 to 9 levels.
TRL1) Basic principles observed and reported
TRL2) Technology concept and/or application formulated
TRL3) Analytical and experimental critical function
and/or characteristic proof of concept
TRL4) Breadboard validation in laboratory environment
TRL5) Breadboard validation in relevant environment
TRL6) Model or prototype demonstration in a relevant
environment
TRL7) Prototype demonstration in an operational envi-

ronment
TRL8) Actual system completed and 'flight qualified'
through test and demonstration
TRL9) Actual system 'flight proven'
A technology with a lower TRL contributes to frequent
failures when the software is developed. This creates low-
er mean time between failures (MTBF), increased down-
time, lower meantime between repairs (MTBR), etc. When
the TRL level is more than six it is considered mature
enough to provide good reliable software. Higher MTBF
indicates more reliable software and decreased down-

time. Lower MTBR reduces the availability of software to
perform intended functions. Careful analysis must be
performed before a given technology is chosen to satisfy a
given Army vehicle software requirement. More re-
sources and efforts are needed to make lower TRL tech-
nology work and it cause a lot of problems. The TRL is a
very good indicator of future R & A of given software.

Number of open requirements (OR)

Open requirements have issues & unanswered ques-
tions. Unknown clarity on the requirements contributes to
misunderstood requirements, increased redesigns, missed
schedules, skipped technical documentation, cutting de-
sign corners, un-maintainable complex modules suscepti-
ble to higher failures and defects, etc. These characteris-
tics jeopardize the reliability of future Army vehicle soft-
ware.

Number of planned technical reviews (TR)

Technical reviews are performed during software de-
velopment, design, and test phases to find problems soon.
If the Army vehicle software development has planned
for relatively fewer required technical reviews, it will be
hard to find the problems in the code, design, test cases,
and architecture. Fewer planned technical reviews in-
creases rework, redesign, bad coding practices, failures,
defects, etc. The technical reviews consist of code, design,
architecture, and integration reviews. These are designed
to help software recover from possible future errors or
defects or downtime. Lack of these planned reviews is a
very good indicator of future R & A of Army vehicle soft-
ware.

Number of planned documentation (DOC)

Tasks for creating technical documents are a must re-
quirement for software development. The higher the
number of documentation tasks scheduled for complex
functionality the lower the data integrity, information
assurance, interoperability, operational, maintenance,

TABLE 3
PROPOSED PREDICTION METRIC

Factors Named Factor

F1 Number of planned technical reviews (TR)

F2 Number of planned documentation tasks (DOC)

F3 Technical readiness review (TRL)

F4 Number of open requirements (OR)

F5 Number of planned configuration management tasks

(CM)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

 5

testing, and rework issues. Documentation includes code,
design, architecture, test cases, and requirements in order
to reduce future unknowns and maintenance issues. This
is a very good indicator of future M of Army vehicle
software.

Configuration management (CM)

Configuration management for software is vital to the
success of Army vehicle software. CM allows all parts
and versions of software to be properly integrated and
documented. A greater number of configuration man-
agement tasks scheduled for complex functionality re-
duce information assurance, interoperability, operational,
maintenance, and testing issues, as well as MTBF, MTBR,
MTTR, system downtime. CM tasks such as source and
documentation control, release schedules, etc contributes
to a reduced logistics and maintenance footprint. This is a
very good indicator of future M of Army vehicle soft-
ware.

3 THE SOFTWARE COMPLEXITY PREDICTION

ALGORITHM

Software complexity prediction using a number of inputs
is tricky and is not always precise. Many mathematicians
tend to apply complex math to derive expressions to ob-
tain near accurate results. The software development
planning resources consist of both technical and non-
technical personnel, and the software discipline needs
simpler methods and tools to evaluate complex pheno-
mena such as software complexity during the planning
phase. For this situation, fuzzy logic solution offers great
advantages to solve complex problems using a number of
inputs. Fuzzy logic [11] proposed by L. A. Zadeh has been
used where uncertainty and no mathematical relations
exists. Software complexity research area is vast and very
hard to predict or analyze with the limited amount of
measurable data. Empirical studies consume time and
produce lower fidelity results. Fuzzy logic provides rule
based approaches to solve a given problem using simple
steps. We propose the following Army vehicle software
complexity prediction algorithm using fuzzy logic (see
Fig.1 for algorithm flow chart).

Step1: Read String array inputs S = {Software 1…. Software

N} for predicting software complexity;

Step2: for i=1 to N (for each software)

// refer section 2 for the details of TRL, TR, OR, DOC, and CM

N (1) = collect TRL number from the technology

 strategy document for software (i);

 N (2) = calculate number of planned technical reviews

 (TR) from the project plan for software (i);

N (3) = calculate number of open requirements (OR)

 from the requirements analysis document for

 software (i);

N (4) = calculate number of planned documentation

tasks (DOC) from the project plan for soft

ware (i);

N (5) = calculate number of planned configuration

management tasks (CM) from the project plan for

software (i);

M (i) = N; (Store N array for software (i) in M array).

 end for

Step3: Read integer inputs array from M array;

 // refer section 4 for fuzzy rules details.

Step4: Store Fuzzy rules in array X = {rule1.... rule15};

Step5: for i = 1 to N // Loop for computing software complexity

for each software

 W = M(i) //get the ith element from W array

 for j=1 to 5

 Y(i) = fuzzify (W(i));

 end for

Step6: for i = 1 to 15

 if i <=11 then

 Z(i) = apply fuzzyrule(X(i)) on Y(1) & Y(2) & Y(3);

 else

 Z(i) = apply fuzzyrule(X(i)) on Y(4) & Y(5);

 end if

 end for

Step7: Compute Reliability, R = centroid De-fuzzufication of

 Z(1) to Z(11);

 Compute Availability, A = centroid De-fuzzufication of

 Z(1) to Z(10);

 Compute Maintainability, M = centroid De-fuzzufication

 of Z(12) to Z(15);

Step8: Predict Software complexity from R, A, and M values
 end for // ends for loop for each software in a software ar-
ray M.

Fuzzification [11] is a process of transforming crisp in-
put values into grades of membership for linguistic terms
of fuzzy sets. De-fuzzification is a process of producing a
quantifiable result in fuzzy logic, given fuzzy sets and
corresponding membership degrees. A fuzzy set is a class
of objects with various grades of membership under al-
most any condition which can assign a value in between
zero and one, in other words, a fuzzy set is a pair (A,m)
where A is a set and m: A [0,1]. Degree of membership
is the grade displacement for the zero to one range in a
fuzzy set. A fuzzy number is a convex, normalized fuzzy
set whose membership function is at least continuous
and has the functional value μA(x) = 1 at one element.
Fuzzy sets and membership functions are defined ma-
thematically using the following definition. If X is a col-
lection of objects denoted by z, then a fuzzy set A in X is
defined as a set of ordered pairs:

A = {(x, µA(x)) | x ϵ X} (1)

µA(x) is called the membership function (MF) of x in A.
The MF maps each element of X to a continuous member-
ship value (or membership grade) between zero and one.

http://en.wikipedia.org/wiki/Fuzzy_logic

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

4 THE SOFTWARE COMPLEXITY PREDICTION MODEL

We propose a fuzzy logic based Army vehicle software
complexity prediction model using the proposed five fac-
tors metrics. The software fuzzy logic toolbox was used to
develop the model. The TABLE 4 lists the fuzzy variables
and its mapping with the proposed metric elements.

The prediction model has three components i.e. fuzzifi-
cation, rule-based fuzzy inference engine, and de-
fuzzification. The model consists of five inputs, three out-
puts and 15 rules. According to the predefined rules, the
model predicts the appropriate software complexity in
terms of RAM. Both the fuzzy inputs and outputs are
modeled using the trapezoidal membership functions.
The membership grades for TRL are described by LOW,
MEDIUM, and HIGH membership functions (see Fig. 5)
and all other the fuzzy inputs are described by NOTH-
ING, SOME and FULL membership functions (See Fig. 4).
The fuzzy output’s membership grades are described by
RED, YELLOW, and GREEN membership functions (See
Fig. 6).

Fig.2 describes the typical characteristics of a trapezoid-
al membership function. The core of a normal fuzzy set A
is the crisp set that contains all the elements of X that have
the membership grades of one in, A i.e.

Core (A) = {x ϵ X | µA(x) =1} (2)

The boundary is the crisp set that contains all the ele-
ments of X that have the membership grades of x < µA(x) <
1 in A. Fig. 3 shows the trapezoidal function details.
 For all the fuzzy inputs and outputs, the core (A) is de-
fined as follows:

Set A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Support (LOW) = Support (RED) = {0, 1, 2, 3}
Core (LOW) = Core (RED) = {1, 2}
Support (MEDIUM) = Support (YELLOW) = {2, 3, 4, 5, 6}
Core (MEDIUM) = Core (YELLOW) = {3, 4, 5}
Support (HIGH) = Support (GREEN) = {5, 6, 7, 8, 9}
Core (HIGH) = Core (GREEN) = {6, 7, 8, 9}

The fuzzy logic toolbox provides a rule-based model as
a software prototype to analyze all the inputs and com-
pute the output. The de-fuzzification rules are based on
the proposed five factors metrics. The list below shows
the 15 fuzzy rules to predict the software complexity us-
ing five inputs and three outputs.

1) If TRL= LOW & TR = NOTHING & OR =NOTHING then
R = RED & A = RED
2) If TRL= LOW & TR = SOME & OR = NOTHING then R =
RED & A = RED
3) If TRL = LOW & TR=FULL & OR=NOTHING then
R=RED & A=YELLOW
4) If TRL=MEDIUM & TR=NOTHING & OR=NOTHING
then R=RED & A=YELLOW
5) If TRL=MEDIUM & TR=SOME & OR=NOTHING then
R=RED & A=YELLOW
6) If TRL=MEDIUM & TR=FULL & OR=NOTHING then
R=YELLOW & A=YELLOW
7) If TRL=HIGH & TR=NOTHING & OR=NOTHING then
R=RED & A=YELLOW
8) If TRL=HIGH & TR=SOME & OR=NOTHING then
R=YELLOW & A=YELLOW
9) If TRL=HIGH & TR=FULL & OR=NOTHING then
R=GREEN & A=GREEN
10) If OR=SOME then R=YELLOW
11) If OR=FULL then R=RED
12) If DOC=NOTHING || CM=NOTHING then M=RED
13) If DOC=SOME & CM=SOME then M=YELLOW
14) If DOC=SOME & CM=FULL then M=YELLOW
15) If DOC=FULL & CM=FULL then M=GREEN

R in the RED membership grades indicates that the relia-
bility component of the Army vehicle software complexi-
ty is in trouble and needs significant improvements in
“TRL” or “TR” or “OR”. A in the RED membership
grades indicates that the availability component of the
Army vehicle software complexity is in trouble and needs
significant improvements in “TRL” or “TR” factors. Simi-
larly, M in the RED membership grades indicates that the
maintainability component of the Army vehicle software
complexity is in trouble and needs improvements in
“CM” or “DOC” factors. The output values of YELLOW
indicate that some improvements are needed for the asso-
ciated factors. The output values of GREEN indicate no

Fig. 1. Software complexity prediction algorithm flowchart

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

 7

improvements needed for the associated factors. The Fig.
8 describes the model elements.
 The fuzzification model element fuzzifies the model
inputs via a max function evaluation based on the mem-
bership functions defined to determine its appropriate
membership grades. Fig. 7 shows the fuzzified input val-
ue of 2.8 as an example of fuzzification process.

In this model, when the inputs and outputs are fuzzi-
fied, the max function is applied between the membership
functions. Per Fig. 7, the value of 2.8 falls into two mem-
bership functions i.e. LOW (0.4) and MEDIUM (0.8), but
when max function is applied between them, the mem-
bership grade falls into MEDIUM membership function.
The fuzzified value is 0.8 for an input of 2.8. In this mod-
el, when the results are de-fuzzied, they use the centroid
method of de-fuzzification. This process returns the cen-
ter area of the curve (see Fig. 9).

5 VALIDATION AND EXAMPLE

Let’s explain the Army vehicle software complexity pre-
diction model using the simple example. The following
are the example data: TRL = 5, TR=4, OR=1, DOC=3 and
CM=4.

Per the software complexity prediction algorithm (see
Section III), all the above five inputs are fuzzified using
the max function. The fuzzified input values are TRL = 1
(MEDIUM), TR = 1 (SOME), OR = 1 (NOTHING), DOC = 1
(SOME), CM = 1 (SOME).

Now the above fuzzified inputs are tested by 15 fuzzy
rules (see Section IV). Per rule#5, If TRL=MEDIUM &
TR=SOME & OR=NOTHING then R=RED & A=YELLOW.
Per rule#13, If DOC=SOME & CM=SOME then
M=YELLOW From the two fuzzy rules #5 & #13, software
complexity can be predicted. The results indicate that the
reliability part of the software complexity as RED (crisp
values between 0 & 3). Availability part of the software
complexity is YELLOW (crisp values between 2 & 6). The
maintainability part of the software complexity is YEL-
LOW (crisp values between 2 & 6). The software fuzzy
logic toolbox can be used to simulate five factors metric
input to determine fuzzy outputs and the appropriate de-
fuzzified values. Depending on the output membership
grades appropriate fuzzy value for the output can be de-

termined from the fuzzy logic toolbox output.

6 CONCLUSION

Many existing software complexity metrics are histori-
cal data distribution dependent and focus only on
software & its technical structure with no considera-
tion of influencing factors for complex software struc-
ture. These metrics are too technical and requires
skilled resources to understand and implement solu-
tions to fix the software complexity. Identifying com-
plexity based on one source of software historical data
and applying it to another may not work for all soft-
ware. Management may not understand the too tech-
nical complexity data obtained from the historical da-
ta. These types of metrics historical software data
based and focus on fixing the symptoms rather than
the problem.

The proposed software complexity metric fills this
gap by providing non-technical variables (factors) to
predict the Army vehicle software complexity. The
proposed metric elements are known to all parties in-
volved in a software development project and the me-
tric data collection is simple. The data can be captured
from the software development project plan, develop-
ment strategy, test strategy, technology strategy, and
requirements analysis documents. In an Army vehicle
software development process, characteristics of these
factors influence schedules, number of defects, cost,
number of modules, use of best practices, etc. Issues
from these variables compounds and results in a com-
plex software structure which is responsible for a less
reliable and available, and hard to maintain software.
The proposed metric is independent of software, pro-
gramming language, and domain. This metric is inde-
pendent of data distribution and is suitable for any
software development. This provides complexity in-
formation very early in the development cycle and al-
lows applicable personnel to take actions immediately
and resolve the issue before it happens. This metric
does not require any technical solution fix the future
software complexity and does not require skilled tech-
nical people. The resources involved in the project
planning phase can easily understand software predic-
tion output and restructure the proposed metric ele-
ments in the appropriate documents to resolve future
software complexity problems. The true software com-
plexity has three main elements i.e. reliability, availa-
bility, and maintainability.

The factor analysis data reduction technique, along
with human logical analysis can be used to extract
smaller uncorrelated factors from mutually correlated
variables. Fuzzy techniques produce satisfactory re-
sults with very minimal effort compared to mathemat-
ical formulations. The input data distribution and the
rule driven output values are analyzed using the fuzzy
logic tool box which serves as a software prototype.
Custom software can be developed to interact with the
fuzzy logic toolbox to provide input and extract the
fuzzy inference engine output for visualization.

TABLE 4
FUZZY VARIABLES

Fuzzy Va-

riables

Fuzzy In-

put/output

Associated prediction metric

TRL Input TRL

TR Input Technical Reviews (TR)

DOC Input Documentation (DOC)

CM Input Configuration management

(CM)

OR Input Open requirements (OR)

R Output Reliability (R)

A Output Availability (A)

M Output Maintainability (M)

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

When complexity is expressed in terms of RAM, the
user can visualize which part of the complexity is hav-
ing problems e.g. if R = YELLOW, A = GREEN, and M =
RED then we can say the reliability and maintainability
part of the software complexity is in trouble. To fix this
problem, we need to adjust the factors responsible for
them. By looking at the current data for TRL and TR,
we can determine the gap and take the necessary ac-
tions for fixing the reliability issue as these three fac-
tors contribute the most for the reliability parts of the
software complexity. The DOC & CM data can be used
to determine the gap for maintainability and to take
action.

The proposed software complexity prediction me-
chanism using five non-technical factors and three
outputs is a novel technique. Historical RAM data are
not available to compare the results. Based on our ex-
perience, these factors truly contribute to RAM.
This proposal opens up software complexity research
gates to produce more simplified non-technical factors
to predict software complexity using multiple inputs
and outputs.

Fig. 5. Fuzzy input membership functions for TRL. This figure de-
scribes the three membership functions LOW, MEDIUM, and HIGH for
TRL crisp input.

Fig. 6. Fuzzy output membership functions for R, A, and M. This figure
describes the three membership functions RED, YELLOW, and
GREEN for R, A, and M outputs.

Fig. 7. Fuzzified input for an example of 2.8 crisp input.

Fig. 2. Characteristics of trapezoidal membership function. This figure
depicts the boundary, core, and support elements of a trapezoidal
membership function.

Fig. 3. Trapezoidal function details. This figure describes the trape-
zoidal function behavior for the crisp inputs.

Fig. 4. Fuzzy input membership functions for TR, OR, CM, and DOC.
This figure describes the three membership functions NOTHING,
SOME, and FULL for TR, OR, CM, and DOC crisp input.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

 9

Fig.8. Army vehicle software complexity prediction model. This figure
describes the Army vehicle software complexity prediction model.

Fig. 10. Army vehicle software metric data from various documents

Fig.9. Centroid de-fuzzification. Courtesy: http://www.mathworks.com

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID UNCLASSIFIED: DIST A. APPROVED FOR PUBLIC RELEASE

ACKNOWLEDGMENT

The authors wish to thank wishes to thank Pame Watts
Dean of TARDEC University for her support.

DISCLAIMER

Disclaimer: Reference herein to any specific commercial
company, product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not neces-
sarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or the
Department of the Army (DoA). The opinions of the au-
thors- expressed herein do not necessarily state or reflect
those of the United States Government or the DoA, and
shall not be used for advertising or product endorsement
purposes.

REFERENCES

[1] Tu Honglei, Sun Wei, Zhang Yanan, “The Research on Software

Metrics and Software Complexity Metrics”, 2009 International

Forum on Computer Science-Technology and Applications.

[2] K. Kearney et al, “Software Complexity Measurement”, ACM

comm., Vol.29, Nov. 1986.

[3] Department of Defense, “A Guide for Achieving Reliability,

Availability, and Maintainability”, Dimensions,” DoD Guide,

http://www.acq.osd.mil/sse/docs/RAM_Guide_080305.pdf.

2005.

[4] T.J. McCabe, “Complexity Measure”, IEEE Trans. Soft Eng., vol.

SE-2, no. 4, pp. 308-320, Dec. 1976.

[5] Halstead, and H. Maurice, “Elements of Software Science”,

Elsevier North-Holland, New York, 1977.

[6] Henry and Kafura,”Software Structure Metrics Based on Infor-

mation Flow”, IEEE Trans. Soft Eng., vol. SE-7, no. 5, pp. 510-

518, Sep. 1981.

[7] Warren Harrison,”An Entropy Based Software Complexity

Measure”, IEEE Trans. Soft Eng., vol. SE-18, no. 11, pp. 1025-

1029, Nov. 1992.

[8] Jingqiu Shao and Yingxu Wang, “A New Measure of Software

Complexity based on Cognitive Weights”, Canadian Journal of

Electrical and Computer Eng., vol.28, no.2, pp. 1333-1338, Apr.

2003.

[9] Khoshgoftaar and Munson, "Applications of a Relative Com-

plexity Metric for Software Project Management ", Journal of

Systems Software, vol. 12, no. 3, pp. 283-293, Jul. 1990.

[10] Dr. Deok H Nam and Dr. Harpreet Singh,” Pattern Recognition

using Multivariate-based Fuzzy Inference Rule Reduction on

Neuro Fuzzy”, Fuzzy Information Processing Society, pp. 573-

578, Jun 2005.

[11] L. Zadeh “Fuzzy Sets,” Inform. Contr., vol. 8, no. 3, pp. 338-353,

1965.

Macam S. Dattathreya received B.E degree in Industrial and Pro-

duction Engineering from the University of Mysore, India in 1994,

and the M.S degree in Computer Engineering from Wayne State

University, Detroit, MI, USA in 1999. He has been working in the

software engineering area as a software developer, designer, and a

lead IT architect. He has worked in IBM global services as a lead IT

architect from 1999 to 2009, where seven patent applications were

filed on his behalf, and three technical journal articles were published

to IBM journals.

Harpreet Singh (M’73–SM’85-SLM’09) received his B.Sc.Engg from
Punjabi University, India, in 1963, and his M.S. and Ph.D. from the
University of Roorkee, India, in 1966 and 1971 respectively. He
taught at the University of Roorke from 1963 to 1981. Since 1981 he
has been with Wayne State University, Detroit, MI, where he is now
a professor in the department of Electrical and Computer Engineer-
ing. He has worked in diversified areas of systems, networks, con-
trols, computers, image processing, fuzzy logic, software engineer-
ing, communication network reliability, and VLSI design. Dr. Singh
has more than 250 publications in international journals and confe-
rences and has received a number of awards. He has organized a
number of national and international conferences, and has super-
vised 15 Ph.D theses in different areas in electrical and computer
engineering.

